AnimalTraits – a curated animal trait database for physique mass, metabolic fee and mind dimension

  • Westoby, M. & Wright, I. J. Land-plant ecology on the premise of useful traits. Traits Ecol. Evol. 21, 261–268 (2006).

    Article 

    Google Scholar 

  • Chown, S. L. & Gaston, Okay. J. Physique dimension variation in bugs: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).

    Article 

    Google Scholar 

  • Parr, C. L. et al. GlobalAnts: a brand new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).

    Article 

    Google Scholar 

  • Wolff, J. O., Wierucka, Okay., Uhl, G. & Herberstein, M. E. Constructing habits doesn’t drive charges of phenotypic evolution in spiders. Proceedings of the Nationwide Academy of Sciences 118, e2102693118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic teams for mining potential metabolic capacities of archaeal and bacterial taxonomic teams. Database 2019 (2019).

  • Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait information. Scientific Knowledge 7, 170 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lowe, E. C., Wolff, J. O. & Aceves-Aparicio, A. In direction of institution of a centralized spider traits database. The Journal of Arachnology (2020).

  • Díaz, S. et al. The worldwide spectrum of plant type and performance. Nature 529, 167–171 (2016).

    ADS 
    Article 

    Google Scholar 

  • Mizerek, T. L., Baird, A. H. & Madin, J. S. Species traits as indicators of coral bleaching. Coral Reefs 37, 791–800 (2018).

    ADS 
    Article 

    Google Scholar 

  • De Meester, G. & Huyghe, Okay. & Van Damme, R. Mind dimension, ecology and sociality: a reptilian perspective. Biol. J. Linn. Soc. Lond. 126, 381–391 (2019).

    Article 

    Google Scholar 

  • Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A worldwide synthesis of animal phenological responses to local weather change. Nat. Clim. Chang. 8, 224–228 (2018).

    ADS 
    Article 

    Google Scholar 

  • Makarieva, A. M. et al. Imply mass-specific metabolic charges are strikingly comparable throughout life’s main domains: Proof for all times’s metabolic optimum. Proceedings of the Nationwide Academy of Sciences 105, 16994 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gallagher, R. V. et al. Open Science ideas for accelerating trait-based science throughout the Tree of Life. Nat Ecol Evol 4, 294–303 (2020).

    Article 

    Google Scholar 

  • R Core Workforce. A Language and Setting for Statistical Computing. Vienna, Austria: R Basis for Statistical Computing. (2020).

  • Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Res. 2, (2013).

  • Pebesma, E., Mailund, T. & Hiebert, J. Measurement Items in R. R J. 8, 486–494 (2016).

    Article 

    Google Scholar 

  • Hiebert, J. udunits-2 bindings for R. (2016).

  • Iwaniuk, A. N. & Nelson, J. E. Can endocranial quantity be used as an estimate of mind dimension in birds? Canadian Journal of Zoology-Revue Canadienne De Zoologie 80, 16–23 (2002).

    Article 

    Google Scholar 

  • Taylor, G. M., Nol, E. & Boire, D. Mind areas and encephalization in anurans: adaptation or stability? Mind Behav. Evol. 45, 96–109, https://doi.org/10.1159/000113543 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McLean, D. J. AnimalTraits (v1.0.7). Zenodo. https://doi.org/10.5281/zenodo.6468938 (2022).

  • Christian, Okay. & Conley, Okay. Exercise and Resting Metabolism of Varanid Lizards In contrast With Typical Lizards. Aust. J. Zool. 42, 185–193, https://doi.org/10.1071/ZO9940185 (1994).

    Article 

    Google Scholar 

  • Hadley, N. F., Ahearn, G. A. & Howarth, F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol., 215–222 (1981).

  • Wang, L. C., Jones, D. L., MacArthur, R. A. & Fuller, W. A. Adaptation to chilly: power metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can. J. Zool. 51, 841–846, https://doi.org/10.1139/z73-125 (1973).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nevo, E. & Shkolnik, A. Adaptive metabolic variation of chromosome varieties in mole rats, Spalax. Experientia 30, 724–726, https://doi.org/10.1007/bf01924150 (1974).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Haim, A. Adaptive variations in warmth manufacturing inside Gerbils (genus Gerbillus) from totally different habitats. Oecologia 61, 49–52, https://doi.org/10.1007/bf00379087 (1984).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kamel, S. & Gatten, R. E. J. Cardio and Anaerobic Exercise Metabolism of Limbless and Fossorial Reptiles. Physiol. Zool. 56, 419–429, https://doi.org/10.1086/physzool.56.3.30152607 (1983).

    Article 

    Google Scholar 

  • Gatten, R. E. Jr. Cardio metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 61, 325–337, https://doi.org/10.1016/0300-9629(78)90116-0 (1978).

    Article 

    Google Scholar 

  • Coelho, J. R. & Moore, A. J. Allometry of resting metabolic fee in cockroaches. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 587–590, https://doi.org/10.1016/0300-9629(89)90598-7 (1989).

    CAS 
    Article 

    Google Scholar 

  • Lighton, J. & Garrigan, D. Ant respiration: testing regulation and mechanism hypotheses with hypoxia. J. Exp. Biol. 198, 1613–1620 (1995).

    CAS 
    Article 

    Google Scholar 

  • Pettit, T. N., Ellis, H. I. & Whittow, G. C. Basal metabolic fee in tropical seabirds. The Auk 102, 172–174, https://doi.org/10.2307/4086838 (1985).

    Article 

    Google Scholar 

  • Bozinovic, F. & Contreras, L. C. Basal fee of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Tympanoctomys barrerae. Oecologia 84, 567–570, https://doi.org/10.1007/bf00328175 (1990).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Morrison, P. & Middleton, E. H. Physique temperature and metabolism within the pigmy marmoset. Folia Primatol. 6, 70–82, https://doi.org/10.1159/000155068 (1967).

    CAS 
    Article 

    Google Scholar 

  • Bartholomew, G. A. & Casey, T. M. Physique temperature and oxygen consumption throughout relaxation and exercise in relation to physique dimension in some tropical beetles. J. Therm. Biol. 2, 173–176, https://doi.org/10.1016/0306-4565(77)90026-2 (1977).

    Article 

    Google Scholar 

  • Cortés, A., Báez, C., Rosenmann, M. & Pino, C. Physique temperature, exercise cycle and metabolic fee in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 109, 967–973, https://doi.org/10.1016/0300-9629(94)90245-3 (1994).

    Article 

    Google Scholar 

  • Leitner, P. & Nelson, J. E. Physique temperature, oxygen consumption and coronary heart fee within the Australian false vampire bat, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74, https://doi.org/10.1016/0010-406X(67)90115-6 (1967).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Whittow, G. C., Gould, E. & Rand, D. Physique temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus. J. Mammal. 58, 233–235, https://doi.org/10.2307/1379582 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Weathers, W. W., Koenig, W. D. & Stanback, M. T. Breeding energetics and thermal ecology of the acorn woodpecker in central coastal California. Condor, 341–359, https://doi.org/10.2307/1368232 (1990).

  • Shelton, T. G. & Appel, A. G. Carbon dioxide launch in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): results of caste, mass, and motion. J. Insect Physiol. 47, 213–224, https://doi.org/10.1016/S0022-1910(00)00111-6 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bradley, T. J., Brethorst, L., Robinson, S. & Hetz, S. Adjustments within the Charge of CO2 Launch following Feeding within the Insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302–309, https://doi.org/10.1086/367953 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Herreid, C. F. & Full, R. J. Cockroaches on a treadmill: cardio working. J. Insect Physiol. 30, 395–403, https://doi.org/10.1016/0022-1910(84)90097-0 (1984).

    Article 

    Google Scholar 

  • Arends, A. & McNab, B. Okay. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 130, 105–122, https://doi.org/10.1016/S1095-6433(01)00371-3 (2001).

    CAS 
    Article 

    Google Scholar 

  • McNab, B. Okay. The comparative energetics of inflexible endothermy: the Arvicolidae. J. Zool. 227, 585–606, https://doi.org/10.1111/j.1469-7998.1992.tb04417.x (1992).

    Article 

    Google Scholar 

  • Bozinovic, F. & Rosenmann, M. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 91, 195–202, https://doi.org/10.1016/0300-9629(88)91616-7 (1988).

    CAS 
    Article 

    Google Scholar 

  • Haim, A. & Skinner, J. D. A comparative research of metabolic charges and thermoregulation of two African antelopes, the steenbok Raphicerus campestris and the blue duiker Cephalophus monticola. J. Therm. Biol. 16, 145–148, https://doi.org/10.1016/0306-4565(91)90036-2 (1991).

    Article 

    Google Scholar 

  • Else, P. L. & Hulbert, A. J. Comparability of the “mammal machine” and the “reptile machine”: power manufacturing. Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9, https://doi.org/10.1152/ajpregu.1981.240.1.R3 (1981).

    CAS 
    Article 

    Google Scholar 

  • Duncan, F. D. & Crewe, R. M. A comparability of the energetics of foraging of three species of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378, https://doi.org/10.1111/j.1365-3032.1993.tb00610.x (1993).

    Article 

    Google Scholar 

  • Kurta, A. & Ferkin, M. The correlation between demography and metabolic fee: a check utilizing the seashore vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105, https://doi.org/10.1007/bf00323786 (1991).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Chown, S. L. & Holter, P. Discontinuous fuel trade cycles in Aphodius fossor (Scarabaeidae): a check of hypotheses regarding origins and mechanisms. J. Exp. Biol. 203, 397–403, https://doi.org/10.1242/jeb.203.2.397 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Duncan, F. D. & Byrne, M. J. Discontinuous fuel trade in dung beetles: patterns and ecological implications. Oecologia 122, 452–458, https://doi.org/10.1007/s004420050966 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rezende, E. L., Silva-Durán, I., Novoa, F. F. & Rosenmann, M. Does thermal historical past have an effect on metabolic plasticity?: a research in three Phyllotis species alongside an altitudinal gradient. J. Therm. Biol. 26, 103–108, https://doi.org/10.1016/S0306-4565(00)00029-2 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J. & Coles, Okay. S. Ecophysiology, vary contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol. 9, 30–39, https://doi.org/10.2307/2390087 (1995).

    Article 

    Google Scholar 

  • Rübsamen, U., Hume, I. D. & Rübsamen, Okay. Impact of ambient temperature on autonomic thermoregulation and exercise patterns within the rufous rat-kangaroo (Aepyprymnus rufescens: Marsupialia). J. Comp. Physiol. 153, 175–179, https://doi.org/10.1007/bf00689621 (1983).

    Article 

    Google Scholar 

  • Lewis, L. C., Mutchmor, J. A. & Lynch, R. E. Impact of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17, 2457–2468, https://doi.org/10.1016/0022-1910(71)90093-X (1971).

    Article 

    Google Scholar 

  • Louw, G., Younger, B. & Bligh, J. Impact of thyroxine and noradrenaline on thermoregulation, cardiac fee and oxygen consumption within the monitor lizard Varanus albigularis albigularis. J. Therm. Biol. 1, 189–193, https://doi.org/10.1016/0306-4565(76)90013-9 (1976).

    CAS 
    Article 

    Google Scholar 

  • Full, R. J., Zuccarello, D. A. & Tullis, A. Impact of variation in type on the price of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).

    CAS 
    Article 

    Google Scholar 

  • Bennett, A. F., Dawson, W. R. & Bartholomew, G. A. Results of exercise and temperature on cardio and anaerobic metabolism within the Galapagos marine iguana. J. Comp. Physiol. 100, 317–329, https://doi.org/10.1007/bf00691052 (1975).

    CAS 
    Article 

    Google Scholar 

  • Thompson, G. G. & Withers, P. C. Results of physique mass and temperature on customary metabolic charges for 2 Australian varanid lizards (Varanus gouldii and V. panoptes). Copeia, 343–350, https://doi.org/10.2307/1446195 (1992).

  • Hack, M. A. The consequences of mass and age on customary metabolic fee in home crickets. Physiol. Entomol. 22, 325–331, https://doi.org/10.1111/j.1365-3032.1997.tb01176.x (1997).

    ADS 
    Article 

    Google Scholar 

  • Gatten, R. E. Jr. Results of temperature and exercise on cardio and anaerobic metabolism and coronary heart fee within the turtles Pseudemys scripta and Terrapene ornata. Comp. Biochem. Physiol., A: Mol. Integr. Physiol, https://doi.org/10.1016/0300-9629(74)90606-9 (1974).

  • Gleeson, T. T. The consequences of coaching and captivity on the metabolic capability of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–128, https://doi.org/10.1007/bf00798176 (1979).

    CAS 
    Article 

    Google Scholar 

  • Bartholomew, G. A. & Lighton, J. R. Endothermy and power metabolism of an enormous tropical fly, Pantophthalmus tabaninus thunberg. J. Comp. Physiol., B 156, 461–467, https://doi.org/10.1007/bf00691031 (1986).

    Article 

    Google Scholar 

  • Bailey, W. J., Withers, P. C., Endersby, M. & Gaull, Okay. The energetic prices of calling within the bushcrisket Requena verticalis (Orthoptera: Tettigoniidae: Listroscelidinae). J. Exp. Biol. 178, 21–37 (1993).

    Article 

    Google Scholar 

  • Kotiaho, J. S. et al. Energetic prices of dimension and sexual signalling in a wolf spider. Proc. R. Soc. B: Biol. Sci. 265, 2203–2209, https://doi.org/10.1098/rspb.1998.0560 (1998).

    Article 

    Google Scholar 

  • Chaplin, S. B. The energetic significance of huddling habits in widespread bushtits (Psaltriparus minimus). The Auk, 424-430 (1982).

  • Seymour, R. S., Withers, P. C. & Weathers, W. W. Energetics of burrowing, working, and free-living within the Namib Desert golden mole (Eremitalpa namibensis). J. Zool. 244, 107–117 (1998).

    Article 

    Google Scholar 

  • Herreid, C. F., Full, R. J. & Prawel, D. A. Energetics of Cockroach Locomotion. J. Exp. Biol. 94, 189–202 (1981).

    Article 

    Google Scholar 

  • Bartholomew, G. A., Lighton, J. R. & Louw, G. N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol., B 155, 155–162, https://doi.org/10.1007/bf00685208 (1985).

    Article 

    Google Scholar 

  • Lighton, J. R. B. & Gillespie, R. G. The energetics of mimicry: the price of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiol. Entomol. 14, 173–177, https://doi.org/10.1111/j.1365-3032.1989.tb00949.x (1989).

    Article 

    Google Scholar 

  • Marhold, S. & Nagel, A. The energetics of the widespread mole rat Cryptomys, a subterranean eusocial rodent from Zambia. J. Comp. Physiol., B 164, 636–645, https://doi.org/10.1007/bf00389805 (1995).

    CAS 
    Article 

    Google Scholar 

  • Pauls, R. W. Energetics of the crimson squirrel: a laboratory research of the results of temperature, seasonal acclimatization, use of the nest and train. J. Therm. Biol. 6, 79–86, https://doi.org/10.1016/0306-4565(81)90057-7 (1981).

    ADS 
    Article 

    Google Scholar 

  • Brush, A. H. Energetics, temperature regulation and circulation in resting, energetic and defeathered California quail, Lophortyx californicus. Comp. Biochem. Physiol. 15, 399–421, https://doi.org/10.1016/0010-406X(65)90141-6 (1965).

    Article 

    Google Scholar 

  • Bailey, C. G. & Riegert, P. W. Vitality dynamics of Encoptolophus sordidus costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Can. J. Zool. 51, 91–100, https://doi.org/10.1139/z73-014 (1973).

    Article 

    Google Scholar 

  • Prinzinger, R., Lübben, I. & Schuchmann, Okay.-L. Vitality metabolism and physique temperature in 13 sunbird species (Nectariniidae). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 92, 393–402, https://doi.org/10.1016/0300-9629(89)90581-1 (1989).

    Article 

    Google Scholar 

  • Baudinette, R. V. Vitality metabolism and evaporative water loss within the California floor squirrel. J. Comp. Physiol. 81, 57–72, https://doi.org/10.1007/bf00693550 (1972).

    Article 

    Google Scholar 

  • Might, M. L. Vitality metabolism of dragonflies (Odonata: Anisoptera) at relaxation and through endothermic warm-up. J. Exp. Biol. 83, 79–94 (1979).

    Article 

    Google Scholar 

  • Baudinette, R. V., Churchill, S. Okay., Christian, Okay. A., Nelson, J. E. & Hudson, P. J. Vitality, water stability and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). J. Comp. Physiol., B 170, 439–446, https://doi.org/10.1007/s003600000121 (2000).

    CAS 
    Article 

    Google Scholar 

  • Withers, P. C. Vitality, Water, and Solute Stability of the Ostrich Struthio camelus. Physiol. Zool. 56, 568–579, https://doi.org/10.1086/physzool.56.4.30155880 (1983).

    Article 

    Google Scholar 

  • Hadley, N. F., Quinlan, M. C. & Kennedy, M. L. Evaporative Cooling within the Desert Cicada: Thermal Effectivity and Water/Metabolic Prices. J. Exp. Biol. 159, 269–283, https://doi.org/10.1242/jeb.159.1.269 (1991).

    Article 

    Google Scholar 

  • Dunson, W. A. & Bramham, C. R. Evaporative Water Loss and Oxygen Consumption of Three Small Lizards from the Florida Keys: Sphaerodactylus cinereus, S. notatus, and Anolis sagrei. Physiol. Zool. 54, 253–259, https://doi.org/10.1086/physzool.54.2.30155827 (1981).

    Article 

    Google Scholar 

  • Wunder, B. A. Evaporative water loss from birds: results of synthetic radiation. Comp. Biochem. Physiol. 63, 493–494, https://doi.org/10.1016/0300-9629(79)90180-4 (1979).

    Article 

    Google Scholar 

  • Maclean, G. S. Elements influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 69, 373–380, https://doi.org/10.1016/0300-9629(81)92992-3 (1981).

    Article 

    Google Scholar 

  • Campbell, Okay. L., McIntyre, I. W. & MacArthur, R. A. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 123, 293–298, https://doi.org/10.1016/S1095-6433(99)00065-3 (1999).

    CAS 
    Article 

    Google Scholar 

  • Weathers, W. W., Paton, D. C. & Seymour, R. S. Discipline Metabolic Charge and Water Flux of Nectarivorous Honeyeaters. Aust. J. Zool. 44, 445–460, https://doi.org/10.1071/ZO9960445 (1996).

    Article 

    Google Scholar 

  • Fewell, J. H., Harrison, J. F., Lighton, J. R. B. & Breed, M. D. Foraging energetics of the ant, Paraponera clavata. Oecologia 105, 419–427, https://doi.org/10.1007/bf00330003 (1996).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Greenstone, M. H. & Bennett, A. F. Foraging technique and metabolic fee in spiders. Ecology 61, 1255–1259, https://doi.org/10.2307/1936843 (1980).

    Article 

    Google Scholar 

  • Schmitz, A. Useful morphology of the respiratory organs within the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J. Comp. Physiol., B 185, 637–646, https://doi.org/10.1007/s00360-015-0914-8 (2015).

    CAS 
    Article 

    Google Scholar 

  • Marder, J. & Bernstein, R. Warmth stability of the partridge Alectoris chukar uncovered to average, excessive and excessive thermal stress. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 149–154, https://doi.org/10.1016/0300-9629(83)90726-0 (1983).

    CAS 
    Article 

    Google Scholar 

  • Lovegrove, B. G., Raman, J. & Perrin, M. R. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): day by day torpor or hibernation? J. Comp. Physiol., B 171, 1–10, https://doi.org/10.1007/s003600000139 (2001).

    CAS 
    Article 

    Google Scholar 

  • Zari, T. The affect of physique mass and temperature on the usual metabolic fee of the herbivorous desert lizard, Uromastyx microlepis. J. Therm. Biol. 16, 129–133, https://doi.org/10.1016/0306-4565(91)90033-X (1991).

    Article 

    Google Scholar 

  • Jensen, T. F. & Nielsen, M. G. The affect of physique dimension and temperature on employee ant respiration. Nat. Jutl. 18, 21–25 (1975).

    Google Scholar 

  • McNab, B. Okay. The Affect of Physique Measurement on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 60, 1010–1021, https://doi.org/10.2307/1936869 (1979).

    Article 

    Google Scholar 

  • Shillington, C. Inter-sexual variations in resting metabolic charges within the Texas tarantula, Aphonopelma anax. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 142, 439–445, https://doi.org/10.1016/j.cbpa.2005.09.010 (2005).

    CAS 
    Article 

    Google Scholar 

  • Nespolo, R. F., Lardies, M. A. & Bozinovic, F. Intrapopulational variation in the usual metabolic fee of bugs: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 206, 4309–4315, https://doi.org/10.1242/jeb.00687 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hailey, A. & Davies, P. M. C. Way of life, latitude and exercise metabolism of natricine snakes. J. Zool. 209, 461–476, https://doi.org/10.1111/j.1469-7998.1986.tb03604.x (1986).

    Article 

    Google Scholar 

  • Richter, T. A., Webb, P. I. & Skinner, J. D. Limits to the distribution of the southern African ice rat (Otomys sloggetti): thermal physiology or aggressive exclusion? Funct. Ecol. 11, 240–246, https://doi.org/10.1046/j.1365-2435.1997.00078.x (1997).

    Article 

    Google Scholar 

  • Putnam, R. W. & Murphy, R. W. Low metabolic fee in a nocturnal desert lizard, Anarbylus switaki Murphy (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 71, 119–123 (1982).

    Article 

    Google Scholar 

  • Lighton, J. R. B. & Fielden, L. J. Mass Scaling of Normal Metabolism in Ticks: A Legitimate Case of Low Metabolic Charges in Sit-and-Wait Strategists. Physiol. Zool. 68, 43–62, https://doi.org/10.1086/physzool.68.1.30163917 (1995).

    Article 

    Google Scholar 

  • Jones, D. L. & Wang, L. C.-H. Metabolic and cardiovascular diversifications within the western chipmunks, genus Eutamias. J. Comp. Physiol. 105, 219–231, https://doi.org/10.1007/bf00691124 (1976).

    Article 

    Google Scholar 

  • Casey, T. M., Withers, P. C. & Casey, Okay. Okay. Metabolic and respiratory responses of arctic mammals to ambient temperature throughout the summer time. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 64, 331–341, https://doi.org/10.1016/0300-9629(79)90452-3 (1979).

    Article 

    Google Scholar 

  • Grant, G. S. & Whittow, G. C. Metabolic price of incubation within the Laysan albatross and Bonin petrel. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 77–82, https://doi.org/10.1016/0300-9629(83)90715-6 (1983).

    CAS 
    Article 

    Google Scholar 

  • Bennett, A. F. & Gleeson, T. T. Metabolic expenditure and the price of foraging within the lizard Cnemidophorus murinus. Copeia, 573-577, https://doi.org/10.2307/1443864 (1979).

  • Withers, P. C., Thompson, G. G. & Seymour, R. S. Metabolic physiology of the north-western marsupial mole. Notoryctes caurinus (Marsupialia: Notoryctidae). Aust. J. Zool. 48, 241–258, https://doi.org/10.1071/ZO99073 (2000).

    Article 

    Google Scholar 

  • Thurling, D. J. Metabolic fee and life stage of the mites Tetranychus cinnabarinus boisd. (Prostigmata) and Phytoseiulus persimilis A-H. (Mesostigmata). Oecologia 46, 391–396, https://doi.org/10.1007/BF00346269 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Vleck, C. M. & Vleck, D. Metabolic fee in 5 tropical chicken species. Condor 81, 89–91, https://doi.org/10.2307/1367864 (1979).

    Article 

    Google Scholar 

  • Terblanche, J. S., Jaco Klok, C., Marais, E. & Chown, S. L. Metabolic fee within the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J. Insect Physiol. 50, 637-645, j.jinsphys.2004.04.010 (2004).

  • Boyce, A. J., Mouton, J. C., Lloyd, P., Wolf, B. O. & Martin, T. E. Metabolic fee is negatively linked to grownup survival however doesn’t clarify latitudinal variations in songbirds. Ecol. Lett. 23, 642–652, https://doi.org/10.1111/ele.13464 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Worthen, G. L. & Kilgore, D. L. Metabolic fee of pine marten in relation to air temperature. J. Mammal. 62, 624–628, https://doi.org/10.2307/1380410 (1981).

    Article 

    Google Scholar 

  • Hails, C. J. The metabolic fee of tropical birds. Condor, 61–65, https://doi.org/10.2307/1367889 (1983).

  • Terblanche, J. S., Klok, C. J. & Chown, S. L. Metabolic fee variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. J. Insect Physiol. 50, 419–428, https://doi.org/10.1016/j.jinsphys.2004.02.009 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schmitz, A. Metabolic charges throughout relaxation and exercise in in another way tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J. Comp. Physiol., B 174, 519–526, https://doi.org/10.1007/s00360-004-0440-6 (2004).

    CAS 
    Article 

    Google Scholar 

  • Anderson, J. F. Metabolic charges of resting salticid and thomisid spiders. J. Arachnol. 129–134 (1996).

  • Adams, N. J. & Brown, C. R. Metabolic charges of sub-Antarctic Procellariiformes: a comparative research. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 169–173, https://doi.org/10.1016/0300-9629(84)90030-6 (1984).

    Article 

    Google Scholar 

  • Morrison, P. & Ryser, F. A. Metabolism and physique temperature in a small hibernator, the meadow leaping mouse, Zapus hudsonius. J. Cell. Compar. Physl. 60, 169–180, https://doi.org/10.1002/jcp.1030600206 (1962).

    CAS 
    Article 

    Google Scholar 

  • Bieńkowski, P. & Marszałek, U. Metabolism and power funds within the snow vole. Acta Theriol. 19, 55–67 (1974).

    Article 

    Google Scholar 

  • Lardies, M. A., Catalán, T. P. & Bozinovic, F. Metabolism and life-history correlates in a lowland and highland inhabitants of a terrestrial isopod. Can. J. Zool. 82, 677–687, https://doi.org/10.1139/z04-033 (2004).

    Article 

    Google Scholar 

  • Król, E. Metabolism and thermoregulation within the japanese hedgehog Erinaceus concolor. J. Comp. Physiol., B 164, 503–507, https://doi.org/10.1007/bf00714589 (1994).

    Article 

    Google Scholar 

  • Hennemann, W. W., Thompson, S. D. & Konecny, M. J. Metabolism of Crab-Consuming Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids. Physiol. Zool. 56, 319–324, https://doi.org/10.1086/physzool.56.3.30152596 (1983).

    Article 

    Google Scholar 

  • Lovegrove, B. G. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69, 551–555, https://doi.org/10.1007/bf00410361 (1986).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Prinzinger, R. & Hänssler, I. Metabolism-weight relationship in some small nonpasserine birds. Experientia 36, 1299–1300, https://doi.org/10.1007/bf01969600 (1980).

    Article 

    Google Scholar 

  • Hill, R. W. Metabolism, thermal conductance, and physique temperature in one of many largest species of Peromyscus, P. pirrensis. J. Therm. Biol. 1, 109–112, https://doi.org/10.1016/0306-4565(76)90029-2 (1976).

    Article 

    Google Scholar 

  • Saarela, S. & Hissa, R. Metabolism, thermogenesis and day by day rhythm of physique temperature within the wooden lemming, Myopus schisticolor. J. Comp. Physiol., B 163, 546–555, https://doi.org/10.1007/bf00302113 (1993).

    CAS 
    Article 

    Google Scholar 

  • MacMillen, R. E. Nonconformance of ordinary metabolic fee with physique mass in Hawaiian Honeycreepers. Oecologia 49, 340–343, https://doi.org/10.1007/bf00347595 (1981).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Krog, H. & Monson, M. Notes on the metabolism of a mountain goat. Am. J. Physiol. 178, 515–516 (1954).

    CAS 
    Article 

    Google Scholar 

  • Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. Diet and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87, https://doi.org/10.1007/bf00378556 (1985).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Farrell, D. J. & Wooden, A. J. The vitamin of the feminine mink (Mustela vison). I. The metabolic fee of the mink. Can. J. Zool. 46, 41–45, https://doi.org/10.1139/z68-008 (1968).

    Article 

    Google Scholar 

  • Hennemann, W. W. & Konecny, M. J. Oxygen consumption in massive noticed genets, Genetta tigrina. J. Mammal. 61, 747–750, https://doi.org/10.2307/1380332 (1980).

    Article 

    Google Scholar 

  • Might, M. L., Pearson, D. L. & Casey, T. M. Oxygen consumption of energetic and inactive grownup tiger beetles. Physiol. Entomol. 11, 171–179, https://doi.org/10.1111/j.1365-3032.1986.tb00403.x (1986).

    Article 

    Google Scholar 

  • Bartholomew, G. A. & Casey, T. M. Oxygen Consumption of Moths Throughout Relaxation, Pre-Flight Heat-Up, and Flight In Relation to Physique Measurement and Wing Morphology. J. Exp. Biol. 76, 11–25 (1978).

    Article 

    Google Scholar 

  • MacMillen, R. E., Whittow, G. C., Christopher, E. A. & Ebisu, R. J. Oxygen consumption, evaporative water loss, and physique temperature within the sooty tern. The Auk, 72–79 (1977).

  • Francis, C. & Brooks, G. R. Oxygen consumption, fee of coronary heart beat and ventilatory fee in parietalectomized lizards, Sceloporus occidentalis. Comp. Biochem. Physiol. 35, 463–469, https://doi.org/10.1016/0010-406X(70)90609-2 (1970).

    Article 

    Google Scholar 

  • Tucker, V. A. Oxygen consumption, thermal conductance, and torpor within the California pocket mouse Perognathus californicus. J. Cell. Physiol. 65, 393–403, https://doi.org/10.1002/jcp.1030650313 (1965).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McNab, B. Okay. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 203, 485–510, https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).

    Article 

    Google Scholar 

  • Genoud, M., Bonaccorso, F. J. & Anends, A. Charge of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 97, 229–234, https://doi.org/10.1016/0300-9629(90)90177-T (1990).

    Article 

    Google Scholar 

  • Genoud, M. & Ruedi, M. Charge of metabolism, temperature laws, and evaporative water loss within the lesser gymnure Hylomys suillus (Insectivora, Mammalia). J. Zool. 240, 309–316, https://doi.org/10.1111/j.1469-7998.1996.tb05287.x (1996).

    Article 

    Google Scholar 

  • Ricklefs, R. E. & Matthew, Okay. Okay. Charges of oxygen consumption in 4 species of seabird at Palmer Station, Antarctic peninsula. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 885–888, https://doi.org/10.1016/0300-9629(83)90363-8 (1983).

    CAS 
    Article 

    Google Scholar 

  • Lasiewski, R. C. & Dawson, W. R. A Re-Examination of the Relation between Normal Metabolic Charge and Physique Weight in Birds. Condor 69, 13–23, https://doi.org/10.2307/1366368 (1967).

    Article 

    Google Scholar 

  • Goldstein, R. B. Relation of metabolism to ambient temperature within the Verdin. Condor 76, 116–119, https://doi.org/10.2307/1365995 (1974).

    Article 

    Google Scholar 

  • Mispagel, M. E. Relation of oxygen consumption to dimension and temperature in desert arthropods. Ecol. Entomol. 6, 423–431, https://doi.org/10.1111/j.1365-2311.1981.tb00634.x (1981).

    Article 

    Google Scholar 

  • Bryant, D. M., Hails, C. J. & Tatner, P. Reproductive energetics of two tropical chicken species. The Auk, 25–37 (1984).

  • Holter, P. Useful resource utilization and native coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39, 213–227, https://doi.org/10.2307/3544488 (1982).

    Article 

    Google Scholar 

  • Goldstein, D. L. & Nagy, Okay. A. Useful resource Utilization by Desert Quail: Time and Vitality, Meals and Water. Ecology 66, 378–387, https://doi.org/10.2307/1940387 (1985).

    Article 

    Google Scholar 

  • Louw, G. N., Nicolson, S. W. & Seely, M. Okay. Respiration beneath desert sand: carbon dioxide diffusion and respiratory patterns in a tenebrionid beetle. J. Exp. Biol. 120, 443–446 (1986).

    Article 

    Google Scholar 

  • Anderson, J. F. & Prestwich, Okay. N. Respiratory Gasoline Change in Spiders. Physiol. Zool. 55, 72–90, https://doi.org/10.1086/physzool.55.1.30158445 (1982).

    Article 

    Google Scholar 

  • Meyer, E. & Phillipson, J. Respiratory metabolism of the isopod Trichoniscus pusillus provisorius. Oikos, 69–74, https://doi.org/10.2307/3544200 (1983).

  • Duncan, F. D. & Dickman, C. R. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129, 509–517, https://doi.org/10.1007/s004420100772 (2001).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Nielsen, M. G. Respiratory charges of ants from totally different climatic areas. J. Insect Physiol. 32, 125–131, https://doi.org/10.1016/0022-1910(86)90131-9 (1986).

    Article 

    Google Scholar 

  • Calder, W. A. III & Dawson, T. J. Resting metabolic charges of ratite birds: the kiwis and the emu. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 479–481 (1978).

    Article 

    Google Scholar 

  • Kawamoto, T. H., Machado, Fd. A., Kaneto, G. E. & Japyassu, H. F. Resting metabolic charges of two orbweb spiders: A primary strategy to evolutionary success of ecribellate spiders. J. Insect Physiol. 57, 427–432, https://doi.org/10.1016/j.jinsphys.2011.01.001 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lehmann, F. O., Dickinson, M. H. & Staunton, J. The scaling of carbon dioxide launch and respiratory water loss in flying fruit flies (Drosophila spp.). J. Exp. Biol. 203, 1613–1624 (2000).

    CAS 
    Article 

    Google Scholar 

  • Chown, S. L. et al. Scaling of insect metabolic fee is inconsistent with the nutrient provide community mannequin. Funct. Ecol. 21, 282–290, https://doi.org/10.1111/j.1365-2435.2007.01245.x (2007).

    Article 

    Google Scholar 

  • Bartholomew, G. A. & Lighton, J. R. B. Brief Communication: Air flow and Oxygen Consumption Throughout Relaxation and Locomotion in a Tropical Cockroach, Blaberus Giganteus. J. Exp. Biol. 118, 449–454 (1985).

    Article 

    Google Scholar 

  • Stahel, C. D., Megirian, D. & Nicol, S. C. Sleep and metabolic fee within the little penguin, Eudyptula minor. J. Comp. Physiol., B 154, 487–494, https://doi.org/10.1007/bf02515153 (1984).

    Article 

    Google Scholar 

  • Lighton, J. R. Sluggish Discontinuous Air flow within the Namib Dune-sea Ant Camponotus Detritus (Hymenoptera, Formicidae). J. Exp. Biol. 151, 71–82 (1990).

    Article 

    Google Scholar 

  • Bech, C., Chappell, M. A., Astheimer, L. B., Londoño, G. A. & Buttemer, W. A. A ‘sluggish tempo of life’ in Australian old-endemic passerine birds shouldn’t be accompanied by low basal metabolic charges. J. Comp. Physiol., B 186, 503–512, https://doi.org/10.1007/s00360-016-0964-6 (2016).

    CAS 
    Article 

    Google Scholar 

  • Younger, S. R. & Block, W. Some components affecting metabolic fee in an Antarctic mite. Oikos, 178–185, https://doi.org/10.2307/3544180 (1980).

  • Wang, L. C.-H. & Hudson, J. W. Some physiological elements of temperature regulation within the normothermic and lethargic hispid pocket mouse, Perognathus hispidus. Comp. Biochem. Physiol. 32, 275–293, https://doi.org/10.1016/0010-406X(70)90941-2 (1970).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bedford, G. S. & Christian, Okay. A. Normal metabolic fee and most well-liked physique temperatures in some Australian pythons. Aust. J. Zool. 46, 317–328, https://doi.org/10.1071/ZO98019 (1999).

    Article 

    Google Scholar 

  • Vogt, J. T. & Appel, A. G. Normal metabolic fee of the hearth ant, Solenopsis invicta Buren: results of temperature, mass, and caste. J. Insect Physiol. 45, 655–666, https://doi.org/10.1016/S0022-1910(99)00036-0 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thompson, G., Heger, N., Heger, T. & Withers, P. Normal metabolic fee of the most important Australian lizard, Varanus giganteus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 111, 603–608, https://doi.org/10.1016/0300-9629(95)00055-C (1995).

    Article 

    Google Scholar 

  • Vitali, S. D., Withers, P. C. & Richardson, Okay. C. Normal metabolic charges of three nectarivorous meliphagid passerine birds. Aust. J. Zool. 47, 385–391, https://doi.org/10.1071/ZO99023 (1999).

    Article 

    Google Scholar 

  • Dawson, T. J., Grant, T. R. & Fanning, D. Normal Metabolism of Monotremes and the Evolution of Homeothermy. Aust. J. Zool. 27, 511–515, https://doi.org/10.1071/ZO9790511 (1979).

    Article 

    Google Scholar 

  • Al-Sadoon, M. Okay. & Abdo, N. M. Temperature results on oxygen consumption of two nocturnal geckos, Ptyodactylus hasselquistii (Donndorff) and Bunopus tuberculatus (Blanford) (Reptilia: Gekkonidae) in Saudi Arabia. J. Comp. Physiol., B 159, 1–4, https://doi.org/10.1007/bf00692676 (1989).

    ADS 
    Article 

    Google Scholar 

  • Roxburgh, L. & Perrin, M. R. Temperature regulation and exercise sample of the round-eared elephant shrew Macroscelides proboscideus. J. Therm. Biol. 19, 13–20, https://doi.org/10.1016/0306-4565(94)90004-3 (1994).

    Article 

    Google Scholar 

  • Wang, L. C.-H. & Hudson, J. W. Temperature regulation in normothermic and hibernating japanese chipmunk, Tamias striatus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 38, 59–90, https://doi.org/10.1016/0300-9629(71)90098-3 (1971).

    CAS 
    Article 

    Google Scholar 

  • Rfinking, L. N., Kilgore, D. L. Jr, Fairbanks, E. S. & Hamilton, J. D. Temperature regulation in normothermic black-tailed prairie canines, Cynomys ludovicianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 57, 161–165, https://doi.org/10.1016/0300-9629(77)90368-1 (1977).

    Article 

    Google Scholar 

  • Chew, R. M., Lindberg, R. G. & Hayden, P. Temperature regulation within the little pocket mouse, Perognathus longimembris. Comp. Biochem. Physiol. 21, 487–505, https://doi.org/10.1016/0010-406X(67)90447-1 (1967).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ebisu, R. J. & Whittow, G. C. Temperature regulation within the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 54, 309–313, https://doi.org/10.1016/S0300-9629(76)80117-X (1976).

    CAS 
    Article 

    Google Scholar 

  • Whittow, G. C., Scammell, C. A., Leong, M. & Rand, D. Temperature regulation within the smallest ungulate, the lesser mouse deer (Tragulus javanicus). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 56, 23–26, https://doi.org/10.1016/0300-9629(77)90436-4 (1977).

    CAS 
    Article 

    Google Scholar 

  • Fusari, M. H. Temperature responses of ordinary, cardio metabolism by the California legless lizard, Anniella pulchra. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 97–101, https://doi.org/10.1016/0300-9629(84)90018-5 (1984).

    CAS 
    Article 

    Google Scholar 

  • Dawson, T. J. & Fanning, F. D. Thermal and energetic issues of semiaquatic mammals: a research of the Australian water rat, together with comparisons with the platypus. Physiol. Zool. 54, 285–296 (1981).

    Article 

    Google Scholar 

  • Campbell, Okay. L. & Hochachka, P. W. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J. Mammal. 81, 578-585, 10.1644/1545-1542(2000)081<0578:TBAMOT>2.0.CO;2 (2000).

  • Hosken, D. J. Thermal Biology and Metabolism of the Higher Lengthy-eared Bat. Nyctophilus main (Chiroptera:Vespertilionidae). Aust. J. Zool. 45, 145–156, https://doi.org/10.1071/ZO96043 (1997).

    Article 

    Google Scholar 

  • Duxbury, Okay. J. & Perrin, M. Thermal biology and water turnover fee within the Cape gerbil, Tatera afra (Gerbillidae). J. Therm. Biol. 17, 199–208, https://doi.org/10.1016/0306-4565(92)90056-L (1992).

    Article 

    Google Scholar 

  • Downs, C. T. & Perrin, M. R. The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 110, 65–69, https://doi.org/10.1016/0300-9629(94)00147-L (1995).

    CAS 
    Article 

    Google Scholar 

  • Downs, C. T. & Perrin, M. R. The thermal biology of three southern African elephant-shrews. J. Therm. Biol. 20, 445–450, https://doi.org/10.1016/0306-4565(95)00003-F (1995).

    Article 

    Google Scholar 

  • Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M. & Arieli, R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda)(Mammalia). J. Zool. 198, 279–291, https://doi.org/10.1111/j.1469-7998.1982.tb02076.x (1982).

    Article 

    Google Scholar 

  • Maskrey, M. & Hoppe, P. P. Thermoregulation and oxygen consumption in Kirk’s dik-dik (Madoqua kirkii) at ambient temperatures of 10–45 °C. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 62, 827–830, https://doi.org/10.1016/0300-9629(79)90010-0 (1979).

    Article 

    Google Scholar 

  • Kamau, J. M., Johansen, Okay. & Maloiy, G. Thermoregulation and customary metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52, 594–602 (1979).

    Article 

    Google Scholar 

  • Knight, M. H. Thermoregulation within the largest African cricetid, the enormous rat Cricetomys gambianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 89, 705–708, https://doi.org/10.1016/0300-9629(88)90856-0 (1988).

    CAS 
    Article 

    Google Scholar 

  • Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M. & Faulkes, C. G. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling throughout the genus Cryptomys. Oecologia 97, 222–227, https://doi.org/10.1007/bf00323153 (1994).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Casey, T. M. & Casey, Okay. Okay. Thermoregulation of Arctic Weasels. Physiol. Zool. 52, 153–164, https://doi.org/10.1086/physzool.52.2.30152560 (1979).

    Article 

    Google Scholar 

  • Layne, J. N. & Dolan, P. G. Thermoregulation, metabolism, and water financial system within the golden mouse (Ochrotomys nuttalli). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 153–163, https://doi.org/10.1016/S0300-9629(75)80146-0 (1975).

    CAS 
    Article 

    Google Scholar 

  • Roberts, J. R. & Baudinette, R. V. Thermoregulation, Oxygen Consumption and Water Turnover in Stubble Quail, Coturnix pectoralis, and King Quail, Coturnix chinensis. Aust. J. Zool. 34, 25–33, https://doi.org/10.1071/ZO9860025 (1986).

    Article 

    Google Scholar 

  • du Plessis, A., Erasmus, T. & Kerley, G. I. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 215–220, https://doi.org/10.1016/0300-9629(89)90538-0 (1989).

    Article 

    Google Scholar 

  • Bradley, W. & Yousef, M. Thermoregulatory responses within the plains pocket gopher, Geomys bursarius. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 35–38, https://doi.org/10.1016/S0300-9629(75)80122-8 (1975).

    CAS 
    Article 

    Google Scholar 

  • Drent, R. H. & Stonehouse, B. Thermoregulatory responses of the Peruvian penguin, Spheniscus humboldti. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 40, 689–710, https://doi.org/10.1016/0300-9629(71)90254-4 (1971).

    CAS 
    Article 

    Google Scholar 

  • El-Nouty, F. D., Yousef, M. Okay., Magdub, A. B. & Johnson, H. D. Thyroid hormones and metabolic fee in burros, Equus asinus, and llamas, Lama glama: results of environmental temperature. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 235–237, https://doi.org/10.1016/0300-9629(78)90238-4 (1978).

    Article 

    Google Scholar 

  • Krüger, Okay., Prinzinger, R. & Schuchmann, Okay.-L. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 73, 679–689 (1982).

    Google Scholar 

  • Bartholomew, G. A. & Barnhart, M. C. Tracheal Gases, Respiratory Gasoline Change, Physique Temperature and Flight in Some Tropical Cicadas. J. Exp. Biol. 111, 131–144 (1984).

    Article 

    Google Scholar 

  • Zachariassen, Okay. E., Andersen, J., Maloiy, G. M. & Kamau, J. M. Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 86, 403–408, https://doi.org/10.1016/0300-9629(87)90515-9 (1987).

    Article 

    Google Scholar 

  • Bucher, T. L. Air flow and oxygen consumption in Amazona viridigenalis. J. Comp. Physiol., B 155, 269–276, https://doi.org/10.1007/bf00687467 (1985).

    ADS 
    Article 

    Google Scholar 

  • Bickler, P. E. & Anderson, R. A. Air flow, Gasoline Change, and Cardio Scope in a Small Monitor Lizard, Varanus gilleni. Physiol. Zool. 59, 76–83, https://doi.org/10.1086/physzool.59.1.30156093 (1986).

    Article 

    Google Scholar 

  • Seid, M. A., Castillo, A. & Wcislo, W. T. The allometry of mind miniaturization in ants. Mind Behav. Evol. 77, 5–13, https://doi.org/10.1159/000322530 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Quesada, R. et al. The allometry of CNS dimension and penalties of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Struct. Dev. 40, 521–529, https://doi.org/10.1016/j.asd.2011.07.002 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Mares, S., Ash, L. & Gronenberg, W. Mind allometry in bumblebee and honey bee employees. Mind Behav. Evol. 66, 50–61, https://doi.org/10.1159/000085047 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Mlikovsky, J. Mind dimension and forearmen magnum space in crows and allies (Aves: Corvidae). Acta Soc. Zool. Bohem. 67, 203–211 (2003).

    Google Scholar 

  • Mlikovsky, J. Mind dimension in birds: 4. Passeriformes. Acta Soc. Zool. Bohem. 54, 27–37 (1990).

    Google Scholar 

  • Bronson, R. T. Mind weight-body weight relationships in 12 species of nonhuman primates. Am. J. Phys. Anthropol. 56, 77–81, https://doi.org/10.1002/ajpa.1330560109 (1981).

    Article 

    Google Scholar 

  • Guay, P., Weston, M., Symonds, M. & Glover, H. Brains and bravado: Little proof of a relationship between mind dimension and flightiness in shorebirds. Austral Ecol. 38, 516–522, https://doi.org/10.1111/j.1442-9993.2012.02441.x (2013).

    Article 

    Google Scholar 

  • Boddy, A. M. et al. Comparative evaluation of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean mind scaling. J. Evol. Biol. 25, 981–994, https://doi.org/10.1111/j.1420-9101.2012.02491.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stankowich, T. & Romero, A. N. The correlated evolution of antipredator defences and mind dimension in mammals. Proc. R. Soc. B: Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.1857 (2017).

  • Sheehan, Z. B. V., Kamhi, J. F., Seid, M. A. & Narendra, A. Differential funding in mind areas for a diurnal and nocturnal way of life in Australian Myrmecia ants. J. Comp. Neurol. 0, https://doi.org/10.1002/cne.24617.

  • Bauchot, R. & Stephan, H. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30, 160–196, https://doi.org/10.1515/mamm.1966.30.1.160 (1966).

    Article 

    Google Scholar 

  • Rosenzweig, M. & Bennett, E. L. Results of differential environments on mind weights and enzyme actions in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95, https://doi.org/10.1002/dev.420020208 (1969).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pirlot, P. & Stephan, H. Encephalization in Chiroptera. Can. J. Zool. 48, 433–444, https://doi.org/10.1139/z70-075 (1970).

    Article 

    Google Scholar 

  • Ashwell, Okay. W. S. Encephalization of Australian and New Guinean marsupials. Mind Behav. Evol. 71, 181–199, https://doi.org/10.1159/000114406 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hoops, D. et al. Proof for concerted and mosaic mind evolution in dragon lizards. Mind Behav. Evol. 90, 211–223, https://doi.org/10.1159/000478738 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Pasquet, A., Toscani, C. & Anotaux, M. Affect of growing old on mind and net traits of an orb net spider. J. Ethol. 36, 85–91, https://doi.org/10.1007/s10164-017-0530-z (2018).

    Article 
    PubMed 

    Google Scholar 

  • Warnke, P. Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Saugern. J. Psychol. Neurol. 13, 355–403 (1908).

    Google Scholar 

  • Naccarati, S. On the relation between the burden of the inner secretory glands and the physique weight and mind weight. Anat. Rec. 24, 254–260, https://doi.org/10.1002/ar.1090240408 (1922).

    Article 

    Google Scholar 

  • Crile, G. & Quiring, D. P. A document of the physique weight and sure organ and gland weights of 3690 animals. Ohio J. Sci. (1940).

  • Franklin, D. C., Garnett, S. T., Luck, G. W., Gutierrez-Ibanez, C. & Iwaniuk, A. N. Relative mind dimension in Australian birds. Emu 114, 160–170, https://doi.org/10.1071/MU13034 (2014).

    Article 

    Google Scholar 

  • Hrdlička, A. Weight of the mind and of the inner organs in American monkeys. With information on mind weight in different apes. Am. J. Phys. Anthropol. 8, 201–211, https://doi.org/10.1002/ajpa.1330080207 (1925).

    Article 

    Google Scholar 

  • Stöckl, A. L., Ribi, W. A. & Warrant, E. J. Variations for nocturnal and diurnal imaginative and prescient within the hawkmoth lamina. J. Comp. Neurol. 524, 160–175, https://doi.org/10.1002/cne.23832 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Napiorkowska, T. & Kobak, J. The allometry of the central nervous system throughout the postembryonic improvement of the spider Eratigena atrica. Arthropod Struct. Dev. 46, 805–814, https://doi.org/10.1016/j.asd.2017.08.005 (2017).

    Article 
    PubMed 

    Google Scholar 

  • El Jundi, B., Huetteroth, W., Kurylas, A. E. & Schachtner, J. Anisometric mind dimorphism revisited: Implementation of a volumetric 3D customary mind in Manduca sexta. J. Comp. Neurol. 517, 210–225, https://doi.org/10.1002/cne.22150 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Krieger, J., Sandeman, R. E., Sandeman, D. C., Hansson, B. S. & Harzsch, S. Mind structure of the most important dwelling land arthropod, the Big Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): proof for a distinguished central olfactory pathway? Entrance. Zool. 7, 25, https://doi.org/10.1186/1742-9994-7-25 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell, B. J. & Leal, M. Mind Group and Habitat Complexity in Anolis Lizards. Mind Behav. Evol. 84, 8–18, https://doi.org/10.1159/000362197 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Platel, R. in Biology of the Reptilia 10 (eds Gans, C. G., Northcutt, R. G & Ulinski, P. S.) 147–171 (Tutorial Press, 1979).

  • Van Der Woude, E., Smid, H. M., Chittka, L. & Huigens, M. E. Breaking Haller’s rule: brain-body dimension isometry in a minute parasitic wasp. Mind Behav. Evol. 81, 86–92, https://doi.org/10.1159/000345945 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Guay, P.-J. & Iwaniuk, A. N. Captive breeding reduces mind quantity in waterfowl (Anseriformes). Condor 110, 276–284, https://doi.org/10.1525/cond.2008.8424 (2008).

    Article 

    Google Scholar 

  • Robinson, C. D., Patton, M. S., Andre, B. M. & Johnson, M. A. Convergent evolution of mind morphology and communication modalities in lizards. Present Zoology 61, 281–291, https://doi.org/10.1093/czoolo/61.2.281 (2015).

    Article 

    Google Scholar 

  • Kvello, P., Løfaldli, B., Rybak, J., Menzel, R. & Mustaparta, H. Digital, three-dimensional common formed atlas of the Heliothis virescens mind with built-in gustatory and olfactory neurons. Entrance. Syst. Neurosci. 3, https://doi.org/10.3389/neuro.06.014.2009 (2009).

  • Montgomery, S. H. & Merrill, R. M. Divergence in mind composition throughout the early phases of ecological specialization in Heliconius butterflies. J. Evol. Biol. 30, 571–582, https://doi.org/10.1111/jeb.13027 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S. & Traniello, J. F. A. Division of labor and mind evolution in insect societies: Neurobiology of utmost specialization within the turtle ant Cephalotes varians. PLOS ONE 14, e0213618, https://doi.org/10.1371/journal.pone.0213618 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rein, Okay., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila Normal Mind. Curr. Biol. 12, 227–231, https://doi.org/10.1016/S0960-9822(02)00656-5 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shen, J.-M., Li, R.-D. & Gao, F.-Y. Results of ambient temperature on lipid and fatty acid composition within the oviparous lizards, Phrynocephalus przewalskii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 142, 293–301, https://doi.org/10.1016/j.cbpb.2005.07.013 (2005).

    CAS 
    Article 

    Google Scholar 

  • Muscedere, M. L., Gronenberg, W., Moreau, C. S. & Traniello, J. F. A. Funding in larger order central processing areas shouldn’t be constrained by mind dimension in social bugs. Proc. R. Soc. B: Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.0217 (2014).

  • Platel, R. L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Grey (Lepidosauria, Sphenodonta). Etude quantifiée des principales subdivisions encéphaliques. J. Hirnforsch. 30, 325–337 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Makarova, A. A. & Polilov, A. A. Peculiarities of the mind group and advantageous construction in small bugs associated to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomol. Rev. 93, 703–713, https://doi.org/10.1134/S0013873813060043 (2013).

    Article 

    Google Scholar 

  • Bininda‐Emonds, O. R. P. Pinniped mind sizes. Mar. Mamm. Sci. 16, 469–481 (2000).

    Article 

    Google Scholar 

  • Stafstrom, J. A., Michalik, P. & Hebets, E. A. Sensory system plasticity in a visually specialised, nocturnal spider. Sci. Rep. 7, 46627, https://doi.org/10.1038/srep46627 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Donnell, S., Bulova, S. J., Barrett, M. & Fiocca, Okay. Measurement constraints and sensory diversifications have an effect on mosaic mind evolution in paper wasps (Vespidae: Epiponini). Biol. J. Linn. Soc. 123, 302–310, https://doi.org/10.1093/biolinnean/blx150 (2018).

    Article 

    Google Scholar 

  • Kamhi, J. F., Gronenberg, W., Robson, S. Okay. A. & Traniello, J. F. A. Social complexity influences mind funding and neural operation prices in ants. Proc. R. Soc. B: Biol. Sci. 283, 20161949, https://doi.org/10.1098/rspb.2016.1949 (2016).

    Article 

    Google Scholar 

  • Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the mind of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333, 125, https://doi.org/10.1007/s00441-008-0620-x (2008).

    Article 
    PubMed 

    Google Scholar 

  • O’Donnell, S. et al. A check of neuroecological predictions utilizing paperwasp caste variations in mind construction (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 68, 529–536, https://doi.org/10.1007/s00265-013-1667-6 (2014).

    Article 

    Google Scholar 

  • Weltzien, P. & Barth, F. G. Volumetric measurements don’t display that the spider mind “central physique” has a particular position in net constructing. J. Morphol. 208, 91–98, https://doi.org/10.1002/jmor.1052080104 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Leave a Comment

    A note to our visitors

    This website has updated its privacy policy in compliance with changes to European Union data protection law, for all members globally. We’ve also updated our Privacy Policy to give you more information about your rights and responsibilities with respect to your privacy and personal information. Please read this to review the updates about which cookies we use and what information we collect on our site. By continuing to use this site, you are agreeing to our updated privacy policy.